Determination of Enantiomeric Purity of v-Pyrrolidinyl Phenylpropanol by Capillary Electrophoresis Using β-Cyclodextrin Polymer as Chiral Selector

Tong $\mathrm{WU}^{\mathrm{l}},$ Xin ZHOU $^{\mathrm{2}},$ Jia Hua CHEN $^{\mathrm{2}}$, Jun Ling GU $^{\mathrm{l}}*,$ Ruo Nong FU $^{\mathrm{l}}$

¹College of Chemical Engineering and Material Science Beijing Institute of Technology, Beijing 100081
²Bioorgnic Molecule Engineering Education Department Opening Laboratory Peiking University, Beijing 100871

Abstract: Enantiomer of v-pyrrolidinyl phenylpropanol was studied by capillary electrophoresis using β -cyclodextrin polymer as chiral selector. We determined the enantiomeric excess value of v-pyrrolidinyl phenylpropanol with RSD 0.48%.

Keywords: Capillary electrophoresis, v-pyrrolidinyl phenylpropanol, enantiomeric excess value, enantioseparation, β -cyclodextrin polymer.

Determining the enantiomeric excess value of novel chiral compounds is of great importance in asymmetry synthesis. NMR¹, HPLC and GC are the ordinary methods applied in this work. In recent years, capillary electrophoresis has been successfully used in chiral separation². In this paper, we separated the enantiomer of v-pyrrolidinyl phenylpropanol (**Figure 1**) by capillary electrophoresis using β -cyclodextrin polymer as chiral selector. According to the ratio of peak area with migration time, the enantiomeric excess value of v-pyrrolidinyl phenylpropanol was determined.

Experiment and Results

Capillary electrophoresis was performed with a spectra PHORESISTM1000 capillary electrophoresis system (Thermo Separation Products, Fremont, CA, USA) equipped with an on-column detector and an untreated fused-silica capillary (Yongnian Optical Fiber Factory, Hebei, China) of total length 70 cm, effective length 63 cm \times 50 µm i.d.. The temperature was 35°C. Detection of the analytes was performed at 290 nm. Samples were pressure injected for 1 s. The applied voltage of the electrophoresis separation was set at 19 kV. 80 mmol/L tris (hydroxymethyl) aminomethane containing 3% β -cyclodextrin polymer (g/ml), pH 3.2. The result was shown as **Figure 2**. The data of measurement were listed in **Table 1**.

 Figure 1
 Structure of v-pyrrolidinyl phenylpropanol
 Figure 2
 Capillary zone electrophorogram of v-pyrrolidinyl phenylpropanol optical active enantiomer

 OH
 R
 Image: Capillary content optical active enantiomer

Table1 Migration time, peak area/migration time and % e/e

Experiment No.	Migration time (min.)		Peak area/migration time		% 0/0
	S-form	R-form	S-form	R-form	70 C/C
1	22.08	22.31	192.93	1396.68	75.73
2	21.71	21.94	180.79	1317.73	75.87
3	22.12	22.37	164.15	1152.35	75.06
4	19.20	19.36	180.31	1307.39	75.76
Average	21.28	21.50	179.54	1293.54	75.60
RSD%	6.57	6.68	9.25	7.90	0.48

Conclusion

Capillary electrophoresis can be successfully used in determination of enantiomeric purity. The deviation of migration time and peak area do not affect the determination of enantiomeric excess value.

References

- 1. R. L. Gu, I. S. Lee, C. Sih, J. Tetrahedron Lett., 1992, 33, 1953.
- 2. F. Li, H. Jin, J. L. Gu, R. N. Fu, J. Beijing Instit. Tech., 1997, 6, 52.

Received 11 September, 2000